闪蒸罐的作用和原理,闪蒸罐的作用和用途

2024-03-23 16:24:21 生活百科 投稿:爱你的玫瑰
最佳答案1、闪蒸是高压的饱和水进入较低压的容器中后,由于压力的突然降低使这些饱和水变成容器压力下的饱和水蒸气和饱和水。2、物质的沸点是随压力增大而升高,随压力降低而降低。这样就可以让高压高温流体经过减压,使其沸点降低,进入闪蒸罐。这时,流体温度高于该压力下的沸点。

闪蒸罐的作用和原理

1

1、闪蒸是高压的饱和水进入较低压的容器中后,由于压力的突然降低使这些饱和水变成容器压力下的饱和水蒸气和饱和水。

2、物质的沸点是随压力增大而升高,随压力降低而降低。这样就可以让高压高温流体经过减压,使其沸点降低,进入闪蒸罐。这时,流体温度高于该压力下的沸点。 流体在闪蒸罐中迅速沸腾汽化,并进行两相分离。使流体达到汽化的设备不是闪蒸罐,而是减压阀。闪蒸罐的作用是提供流体迅速汽化和汽液分离的空间。

3、当水在大气压力下被加热时,100摄氏度是该压力下液体水所能允许的最高温度。再加热也不能提高水的温度,而只能将水转化成蒸汽。水在升温至沸点前的过程中吸收的热叫“显热”,或者叫饱和水显热。在同样大气压力下将饱和水转化成蒸汽所需要的热叫“潜热”。然而,如果在一定压力下加热水,那么水的沸点就要比100摄氏度高,所以就要求有更多的显热。压力越高,水的沸点就高,热含量亦越高。压力降低,部分显热释放出来,这部分超量热就会以潜热的形式被吸收,引起部分水被“闪蒸”成蒸汽。

技术 | 水泥生产线窑头电除尘器提效改造技术

2

【能源人都在看,点击右上角加'关注'】

北极星大气网讯:摘要:电源对于电除尘器中颗粒物荷电、能效有效利用至关重要,关系到电除尘器的收尘效率,高频电源和脉冲电源相对于传统的工频电源具有比较大的优势,在水泥工业颗粒物(PM)排放指标收严的背景下,对水泥熟料线窑头配套电除尘器实施“前电场高频电源+后电场脉冲电源的组合技术”为主,烟气调质、入口预除尘改造,及各级电场预荷电+微网捕集器等辅助手段的组合提效改造技术的原理分析和应用案例分析,通过理论计算和结果分析,为行业提升整治措施提供参考。

电除尘器由于具有处理烟气量大、运行可靠性高、操作简单、维护费用低、设备使用寿命长等特点,在我国水泥行业具有广泛的应用市场。根据《浙江省生态环境厅关于执行国家排放标准大气污染物特别排放限值的通告》(浙环发[2 019]14号)的颁布实施,要求自2020年7月1日起,水泥行业颗粒物(PM)排放浓度不高于20 mg/Nm3。由于水泥厂配置的电除尘器一般仅有三电场,响应特别排放限值排放标准的容错率低,直接扩容改造成四电场、五电场,场地受限、工程量较大、造价也高,如何充分利用现有场地和设施提升除尘效率、降低颗粒物排放浓度,是水泥厂面临的直接难题。

近几年,高压电源技术有了突破性的发展,高频电源、脉冲电源等多种高效电源产品的顺利研发与成功应用,为电除尘器提效改造提供了新的途径和方法。但在实践中,单一的电源使用仍具有一定的局限性。根据燃煤电厂电除尘器的改造经验,充分利用高频电源、脉冲电源的功能特性,可将高频电源、脉冲电源在前、后电场有效组合应用作为一种新的电源提效改造方案,既能降低颗粒物排放、满足达标排放,同时也能节约改造费用、节省改造时间,从而实现提效减费的目的。本文以此为主导,对进一步提升除尘效率开展了多技术有效的组合运用,供同行参考。

1 电除尘器提效改造原理

电除尘器除尘效率一般采用修正后的多依奇效率公式来计算。

2 组合提效改造技术路线

要实施电除尘器提效改造,宜将影响除尘效率的各因子充分调整到最佳组合,可以采用多技术组合使用,主要思路包括:(1)从宏观层面,通过物理性预除尘降低各电场入口PM浓度,提升整体除尘效率;(2)从粒径影响除尘效率角度,通过增湿烟气调质使微细PM凝结成较大的粒子,PM粒径增大,提高驱进速度,提升各级电场和整个电除尘器的除尘效率;(3)从电场强度影响除尘效率角度,可以通过高压电源提升输入电场的均值电压和峰值电压来实现;(4)从各级电场入口PM浓度呈级数降低和节约能源角度,通过前电场高频电源+后电场脉冲电源的角度,实现能效的有效配置。

上述各项技术组合改造路线如图1所示。

3 提效改造案例分析

3.1 提效改造要求

某水泥厂窑头配套电除尘器为三电场干式电除尘器,原除尘器设计出口PM浓度<50 mg/Nm3,已不能满足现阶段PM浓度<20 mg/Nm3的排放要求,需实施提效改造,做到达标排放。

3.2 具体实施方案说明

3.2.1 电源部分改造

电源部分改造主要采用:前电场布置高频电源+后电场布置脉冲电源。通过双电源系统实现前电场在高电压下强放电,后电场在高电压下的弱放电。

(1)针对前电场PM粒径大、浓度高、易发生火花闪络等特点,利用高频电源提高前电场的平均电压、供电功率,增加前电场的二次电压及二次电流,使粉尘充分荷电。具体方法为:采用三相交流输入整流为直流电源,经逆变为高频交流,最后整流输出直流高压,直流供电时其二次电压波形几乎为一条直线,提供了几乎无波动的直流输出。通过提高二次电压平均值,提高粉尘驱进速度,使得前电场粉尘能够充分荷电并被收集下来,大幅提升除尘效率。高频电源可在几十微秒内关断输出,在很短的时间内使火花熄灭,以毫秒级恢复全功率供电,如图2和图3所示,平均输出高压无下降。

(2)针对后电场PM粒径小、浓度低、不易发生火花闪络的特点,实际运行中的情况通常是二次电流大、二次电压无法提升到足够的高电压,而后电场的微细粉尘的捕集,需要更大的电场强度才能有效捕集,因此利用脉冲电源提高后电场的峰值电场,进而使微细颗粒物被充分收集。

脉冲电源在基础电源上叠加极窄的高压脉冲电压,二次电压和二次电流独立控制。叠加的脉冲电源提供微秒级瞬间高压能量,由于脉冲电压的上升以及持续时间很短,虽然瞬时总电压提升很高,但供电前期间隔保持较低的电荷密度,维持了电场的绝缘,不会形成闪络通道,有效抑制了火花闪络,峰值电压接近电场击穿电压,脉冲电源瞬时高压使电晕放电全面均匀,避免了反电晕的产生,可有效提高粉尘荷电效率和荷电量,大幅提高微细粉尘的捕集能力,除尘效率显著提高,符合弱电流下的高电压低排放要求。

相对于传统直流供电,高压脉冲电源供电脉冲电压上升时间极短,提高了电场击穿电压,电场能获得几倍于传统直流电源的峰值电压,利于粉尘粒子荷电提高除尘效率。此外,针对常规直流电源电流用于对PM荷电以及在频繁的火花放电过程中形成浪费,脉冲电源仅在脉冲输出时才产生电流,脉冲宽度窄,电场中离子流和电子流间歇脉动,电场无火花,如图4所示。

(3)电源改造说明:拆除顶部一、二电场的工频变压器和高压隔离开关;拆除配电室内一、二电场用工频电源控制柜内控制器及辅控回路、可控硅等,保留母排、断路器等,增加小母排将工频电源控制柜改造成高频电源。拆除顶部三电场的工频变压器和高压隔离开关;拆除配电室内三电场用工频电源控制柜内控制器及辅控回路、可控硅等,保留母排、断路器等,增加小母排将工频电源控制柜改造成高频+脉冲电源配电柜。动力电缆改造部分:利旧,将原工频电源动力电缆改造成满足高频电源、高频+脉冲电源三相供电的需求。新增信号电缆,高频电源和高频+脉冲电源到DCS的控制电缆、信号电缆,将改造后电源的开关量信号(运行信号、准备好信号、综合报警信号、启动/停止信号)和模拟量信号(二次电压、二次电流)接入主生产系统DCS。

3.2.2 烟气调质

烟气调质主要有两方面的作用:一是通过喷射蒸汽进行烟气调质,降低粉尘比电阻,提高除尘效率;二是因为湿度增加可以使微细颗粒物凝结,提高颗粒物驱进速度,提升除尘效率。

烟气调质改造说明:在余热锅炉出口省煤器集箱取热水,通过闪蒸罐将带压热水闪蒸为低压蒸汽,产生的低压蒸汽经过闪蒸器汽水分离后喷入电场入口烟道水平混合联箱内。为避免喷入到电除尘器入口的蒸汽带水,导致粉尘结块,增加一台闪蒸罐。从省煤器出口集箱接出的热水,由于带有一定温度和压力,进入到闪蒸罐后压力迅速降低,热水闪蒸为蒸汽状态。闪蒸罐内的蒸汽通过罐顶的蒸汽管道接入蒸汽喷射装置,闪蒸罐内少量未蒸发的水分通过底部的接口接入连排管道。通过电动阀控制烟气调质系统的开关,通过手动阀调节蒸汽流量。烟气调质改造如图5所示。

3.2.3 入口预收尘改造

在进口烟箱均布板前部增设一层C型内涡迷宫预收尘装置,收集粗颗粒粉尘,降低入口PM浓度,提高预收尘效果。同时起到气流均布作用,避免电场入口截面中下部粉尘浓度过高,速度过大。

3.2.4 预荷电+微网捕集器改造

根据除尘效率公式(1),从宏观角度出发,通过对各电场入口PM浓度进行物理捕集可以降低各级电场入口PM浓度,提升综合除尘效率。而且配置简单,仅需在除尘器进出口及各电场之间安装微孔金属网。

预荷电改造主要是配合各级微网捕集器使用,提升微网捕集器的捕集效率。一电场的入口前增设预荷电装置,使粉尘在进入电场前就带上电荷,提高整个电场的收尘效率;在三电场末端增设预荷电装置,使PM在进入微网捕集装置之前带上电荷,提高微尘捕集能力,减少二次扬尘。

3.2.5 其他改造

对阴极线、阳极板及电除尘器内部各部件积灰情况检查,对积灰严重部位作进一步分析,采取改进措施。阳极板矫正,并进行加固处理,调整间距和同极距。阴极线全部更换为新型芒刺线,调校变形的阴极大、小框架,调整极间距(同极、异极)包括非电场间距。调整阳极振打同轴度,阳极振打轴进行解体检修,更换磨损的阴极阳极振打耐磨套、螺栓,对所有的阳极振打锤进行更换。阴极振打系统:调整振打器工作中心,检查振打杆露出长度、垂直度、同轴度。壳体常规检查修复:检查各人孔门和保温箱的漏风、密封材料的老化、锁紧螺栓等,更换损坏密封材料,检查烟道、烟箱、壳体、灰斗等有无漏风漏灰并处理。

3.3 改造前后参数对比

某5 000 t/d水泥熟料线窑头电除尘器改造前后主要参数对比见表1。

3.4 提效估算和测试结果分析

1)改造前除尘效率η

改造前电除尘器PM进口浓度≤30 g/Nm3,出口浓度≤50 mg/Nm3。除尘效率为:

η=1-50/30 000=99.83%

2)改造后除尘效率η'

参照既往成功改造经验,依方案实施改造后,可提高粉尘驱进速度,预计改造后驱进速度提高20%~30%左右,改造后按提升下限比集尘面积20%计算。根据公式(1),改造后除尘效率:

结果表明:改造后除尘效果稳定;除尘效率达99.96%,出口PM排放浓度测试值全面低于20 mg/Nm3,通过高效电源的应用组合,并结合增加预荷电+微网捕尘装置,入口预收尘装置,均化气流分布,阳极板、阴极线及振打装置调整等,满足了改造目标要求。

4 结论与建议

依据影响除尘器除尘效率的主要因素,主要采用“前电场高频电源+后电场脉冲电源”技术,配合烟气调质、除尘器入口预收尘装置,各级电场预荷电+微网捕集器等技术的组合使用,从宏观和微观方面全面提升除尘效率,充分挖掘现有电除尘器的潜力,提升除尘效率。结合具体实例,从原理和方法两方面展开论述,结合理论计算和实测结果分析,组合提效改造技术除尘效果稳定,颗粒物排放浓度可稳定在20 mg/Nm3以下,为水泥厂窑头电除尘器实现提标改造提供参考。

作者单位:浙江南方水泥有限公司,浙江省生态环境科学设计研究院

免责声明:以上内容转载自北极星大气网,所发内容不代表本平台立场。

全国能源信息平台联系电话:010-65367702,邮箱:hz@people-energy.com.cn,地址:北京市朝阳区金台西路2号*社

多效蒸发技术在高盐废水处理中的应用 没有比这再详细的啦

3
更多关注公号:环保水处理(hbscl01)

多效蒸发处理器主要用来处理高浓度、高色度、高含盐量的工业废水。同时,回收废水处理过程中产生的附产品。蒸汽耗量低、蒸发温度低、浓缩比大、更合理、更节能、更高效。今天,小七来为大家介绍多效蒸发器在废水处理中的应用!

工业废水分类通常有以下三种:

第一种是按工业废水中所含主要污染物的化学性质分类,含无机污染物为主的为无机废水,含有机污染物为主的为有机废水。例如电镀废水和矿物加工过程的废水,是无机废水;食品或石油加工过程的废水,是有机废水。

第二种是按工业企业的产品和加工对象分类,如冶金废水、造纸废水、炼焦煤气废水、金属酸洗废水、化学肥料废水、纺织印染废水、染料废水、制革废水、农药废水、电站废水等。

第三种是按废水中所含污染物的主要成分分类,如酸性废水、碱性废水、含氰废水、含铬废水、含镉废水、含汞废水、含酚废水、含醛废水、含油废水、含硫废水、含有机磷废水和放射性废水等。

前两种分类法不涉及废水中所含污染物的主要成分,也不能表明废水的危害性。第三种分类法,明确地指出废水中主要污染物的成分,能表明废水一定的危害性。

多效蒸发的技术特点

多效蒸发是使用最早的海水淡化技术,现今已经发展成为较为成熟的废水蒸发技术,解决了结垢严重的问题,逐步应用于高含盐水处理方向。

多效主要有如下几个方面的技术特点:

多效蒸发的传热过程是沸腾和冷凝换热,是双侧相变传热,因此传热系数很高。对于相同的温度范围,多效蒸发所用的传热面积要比多级闪蒸少。多效蒸发的动力消耗少。由于多级闪蒸产生淡水依赖的是含盐水吸收的显热,而潜热远大于显热,因此生产同样多的淡水,多级闪蒸需要的循环量比多效蒸发大出很多,所以多级闪蒸需要更多的动力消耗。多效蒸发的操作弹性很大,负荷范围从110%到40%,皆可正常操作,而且不会使造水比下降。

低温多效蒸发工艺流程图

含盐废水的工艺流程

含盐水首先进入冷凝器中预热、脱气,而后被分成两股物流。一股作为冷却水排回大海,另一股作为蒸馏过程的进料。

进料含盐水加入阻垢剂后被引入到蒸发器的后几效中。料液经喷嘴被均匀分布到蒸发器的顶排管上,然后沿顶排管以薄膜形式向下流动,部分水吸收管内冷凝蒸汽的潜热而蒸发。

二次蒸汽在下一效中冷凝成产品水,剩余料液由泵输送到蒸发器的下一个效组中,该组的操作温度比上一组略高,在新的效组中重复喷淋、蒸发、冷凝过程。剩余的料液由泵往高温效组输送,最后在温度最高的效组中以浓缩液的形式离开装置。

生蒸汽被输入到第一效的蒸发管内并在管内冷凝,管外含盐水产生与冷凝量基本等量的二次蒸汽。

由于第二效的操作压力要低于第一效,二次蒸汽在经过汽液分离器后,进入下一效传热管。蒸发、冷凝过程在各效重复,每效均产生基本等量的蒸馏水,最后一效的蒸汽在冷凝器中被含盐水冷凝。

第一效的冷凝液返回蒸汽发生器,其余效的冷凝液进入产品水罐,各效产品水罐相连。由于各效压力不同使产品水闪蒸,并将热量带回蒸发器。

这样,产品水呈阶梯状流动并被逐级闪蒸冷却,回收的热量可提高系统的总效率。被冷却的产品水由产品水泵输送到产品水储罐。这样生产出来的产品水是平均含盐量小于5mg/1的纯水。

浓盐水从第一效呈阶梯状流入一系列的浓盐水闪蒸罐中,过热的浓盐水被闪蒸以回收其热量。经过闪蒸冷却之后的浓盐水最后经浓盐水泵排回大海。

不凝气在冷凝器富集,由真空泵抽出。

垂直管多效蒸发流程见下图:

垂直管多效蒸发技术流程

D-蒸发器;E-预热器;G一泵:K一冷凝器

低温多效蒸发的技术优势

从其上述原理可以看出,低温多效蒸发的技术优势体现在如下几个方面:

由于操作温度低,可避免或减缓设备的腐蚀和结垢。由于操作温度低,可充分利用电厂和化工厂的低温废热,对低温多效蒸发技术而言,50℃-70℃的低品位蒸汽均可作为理想的热源,可大大减轻抽取背压蒸汽对电厂发电的影响。进料含盐水的预处理更为简单。系统低温操作带来的另一大好处是大大的简化了含盐水的预处理过程。含盐水进入低温多效装置之前只需经过筛网过滤和加入少量阻垢剂就行,而不象多级闪蒸那样必须进行加酸脱气处理。系统的操作弹性大。在高峰期,该淡化系统可以提供设计值110%的产品水;而在低谷期,该淡化系统可以稳定地提供额定值40%的产品水。系统的动力消耗小。低温多效系统用于输送液体的动力消耗很低,只有0.9- 1.2kWh/m3左右。如此可以大大的降低淡化水的制水成本,这一点对于电价较高的地区尤为重要。系统的热效率高。30余度的温差即可安排12以上的传热效数,从而达到10左右的造水比。系统的操作安全可靠。在低温多效系统中,发生的是管内蒸汽冷凝而管外液膜蒸发,即使传热管发生了腐蚀穿孔而泄漏,由于汽侧压力大于液膜侧压力,浓盐水不会流到产品水中,充其量只会产生蒸汽的少量泄漏而影响造水量。

炼化企业有大量富裕的低温余热待利用,经过低温多效蒸发技术处理后的淡水可回用至多个工艺环节,如循环水补水等,实现污水的资源化利用的同时,实现了低温余热的高效利用。

因此,将低温多效蒸发技术引入炼化企业水处理行业,利用其高造水比、处理水质好等优点,可以实现低温余热利用和炼化污水深度处理的有机结合,并解决炼化污水中高含盐污水脱盐难、能耗高等问题。

低温热利用技术对比表

如低温热利用技术对比表所示,较常规热泵技术和多级闪蒸技术,低温多效蒸发在热利用率、技术工艺耦合污水处理等方面具有明显优势,代表了相关技术领域的发展方向,是开展余热利用和污水处理耦合技术的重点方向。

多效蒸发的工艺模式

多效蒸发工艺有以下几种工艺模式:

顺流工艺流程

溶液和蒸汽的流向相同,都由第一效顺序流到末效。原料液用泵送入到第一效,依靠效间压差,自流入(浓缩过程中要是有固体产生或溶液粘度较大就需要添加过料泵)下一效进行处理,完成液自末效用泵抽出。

后一效的压力低,溶液的沸点也相对较低,故溶液从前一效进入后一效时会因过热而自行蒸发,称为闪蒸。因而后一效有可能比前效产生较多的二次蒸汽,但因为后效的浓度比前效高,而操作温度又较低,所以后一效的传热系数比前一效要低,往往第一效的传热系数比末效高很多。

并流流程适宜处理在高浓度下为热敏性的物料。

顺流工艺流程

逆流加料工艺流程

原料液由末效加入,用泵一次送到前一效,完成液由第一效放出,料液与蒸汽逆向流动。随着溶剂的蒸发、溶液浓度逐渐提高的同时,溶液的蒸发温度也逐效上升,因此各效溶液的浓度也比较接近,使各效的传热系数也相近。

但因为溶液从后一效输送到前一效时,料液温度低于送入效的沸点,有时需要补加加热,否则产生的二次蒸汽量将逐渐减少。一般来说,逆流加料流程适宜处理粘度随温度和浓度变化较大的物料,而不适宜处理热敏性的物料。

逆流加料工艺流程

平流加料工艺流程

各效都加入料液,又都引出完成液。此流程用于饱和溶液的蒸发(或溶液浓度较高)。各效都有晶体析出,可及时分离晶体。此法还可用于同时浓缩两种或多种水溶液。

平流加料工艺流程

错流加料工艺流程

亦称混流流程。它是并、逆流流程的结合。错流的特点是兼有并流与逆流的优点而避免其缺点。但操作复杂,要有完善的自控仪表才能实现其稳定操作。

错流加料工艺流程

选择顺流工艺的原因:污水进水料液粘稠度低,不含有大量低沸点的物质,不需要选择逆流模式先冷凝,且不影响传热系数。其次,污水进水盐浓度并不高,只有在极其高浓度时,选择并流加料模式。

WwW.BaiKeZhishi.Com
标签: 闪蒸 原理
免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,转载此文是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:baikezhishi@foxmail.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!